For the John Templeton Foundation, I wrote about the nuanced balance of symmetries that shape our universe.
We live in a perfectly imperfect universe. The latest findings of cosmology tell us that our universe, like a good pancake batter, has matter and energy distributed in a way that is neither too smooth nor too lumpy. Without a high level of uniformity, all would be black holes, but with complete uniformity, the result would be, says cosmologist Luke Barnes, “a perfectly mathematically lovely universe — with no one in it.”
Barnes, who has recently taken a new position at Western Sydney University, specializes in creating simulations of alternate universes to see how space and time might have unfolded when the laws and constants differ from those in our own universe. In a series of forthcoming simulations, Barnes and his collaborators hope to untangle how symmetries and near-symmetries in the laws of physics affect the qualities of our own universe — and the smoothness or lumpiness of other potential universes.